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Abstract

Cooperation is one of the most fundamental human
characteristics, and several interdisciplinary studies
have been conducted to understand this aspect. How-
ever, despite the numerous studies conducted on the
subject, a comprehensive theory regarding coopera-
tion remains elusive. In this study, the theoretical and
practical aspects of human–human, human–machine,
and machine–machine cooperation are explored. Co-
operation is theoretically analyzed from behavioral,
mathematical, and cognitive viewpoints. The theoret-
ical principles were applied to certain unsolved prob-
lems. Furthermore, it is demonstrated that such coop-
erative machines can be used to investigate the human
capabilities of cooperation. The developed versatile
interactive software RoCoCo, which can be used as
a research tool, is presented. Finally, the possibili-
ties and prospects of this research framework, which
is termed the theory of cooperation, are discussed.
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1 Introduction

Cooperation is a fundamental and crucial human char-
acteristic, regarding which numerous interdisciplinary
studies (including philosophy, science, and technol-
ogy) have been conducted. Despite the recent rapid
research progress, a comprehensive theory regarding
cooperation has not been established yet. In this
study, we introduce a framework, termed as the theory
of cooperation, which we proposed to explore human–
human, human–machine, and machine–machine coop-
eration, both via theoretical research and development
of practical machines.

The theory of cooperation aims to answer the fol-
lowing questions:

• What is cooperation?

• How does cooperation work?

• What is human cooperation ability?

• How do we apply cooperation to artificial intelli-
gence systems?

2 Principles of cooperation

We analyze cooperation from behavioral, mathemati-
cal, and cognitive viewpoints to explore the principles
that establish cooperation.

2.1 Behavioral

From a behavioral viewpoint, cooperation generally
comprises the following three interdependent and hi-
erarchical behavioral functions:

Action This function enables each agent to act ac-
cording to the given dynamics and constraints.

Interaction This function enables agents to mutu-
ally predict each other’s behaviors and act under
a given role assignment.

Role coordination This function enables agents to
mutually find and select their own role assign-
ments online.

Among these three functions, role coordination is par-
ticularly important and has been investigated in sev-
eral studies. However, this function is not yet com-
pletely understood with regard to both cognitive and
mathematical aspects.

2.2 Mathematical

We propose hierarchical equilibrium dynamics (HED)
as a mathematical formulation of general cooperation.
It is based on control, game theory, and physics, and
characterized by the structure of dynamics and equi-
librium of coupled dynamics.

The structure comprises the following three-layered
dynamics according to the behavioral hierarchies
(Fig. 1):

Action and task dynamics Modeling of the ac-
tions and tasks executed by the agents.

Interaction equilibrium dynamics Modeling
of the interactions among agents, which are
described via the occurrence of an equilibrium in
the coupling of dynamical systems.

Role equilibrium dynamics Modeling of role co-
ordination, which controls the action equilibrium
dynamics.
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Figure 1: Structure of dynamics that establish coop-
eration

The dynamics of the role coordination for two agents,
frole, and the dynamics of the action of the ith agent,
fact
i , can be expressed as follows:

at+1, bt+1 = frole (at, bt, ct)

yi,t+1, xi,t+1 = fact
i (yi,t, xi,t, ui,t, at, zt)

The task dynamics, f task, can be expressed as follows:

zt+1, vt+1 = f task (zt, vt, y0,t, y1,t)

For optimization, the objective for the control of the
ith agent is expressed as follows:

Joverall
i

= Jrole (A,B,C) + Jact
i (Yi, Xi, Ui) + J task (Z)

where Jrole, Jact
i , and J task denote the objectives for

the control of the dynamics frole, fact
i , and f task, re-

spectively.
HED specializes or generalizes a wide range of for-

mulas for synchronization, such as non-cooperative
game [1], differential game [2], decentralized control
[3], pulse-coupled biological oscillators [4], chaotic syn-
chronization [5], coupling of recurrent neural networks
[6, 7], coupling of statistical dynamical models [8], and
recursive reasoning [9].
Previous studies on cooperative dynamics have ad-

dressed the action and interaction functions but not
the role coordination function. In particular, stud-
ies on the interaction function focused on convergence
to an equilibrium point. However, owing to the ex-
istence of multiple or infinite equilibrium points in
typical problems, emphasis should be placed on the
selection of an appropriate equilibrium point among
the available points; this selection is defined as role
coordination.

2.3 Cognitive

Similar to the equilibrium in game theory that is based
on mutual belief, the equilibrium in HED is also based
on mutual belief. Moreover, because the equilibrium
in HED is hierarchical, a hierarchical structure of mu-
tual beliefs is required. To meet this requirement, we

Figure 2: Belief configuration of an agent for cooper-
ation

propose a mutual belief hierarchy with three layers,
each of which is represented by the corresponding dy-
namics as follows:

Belief The dynamics used by an agent to make deci-
sions.

Mutual belief The dynamics of the coupling be-
tween the belief of an agent and those of others;
not mutual beliefs themselves.

Meta mutual belief The dynamics of the coupling
between the mutual beliefs of an agent and those
of others; not meta mutual beliefs themselves.

The belief configuration of an agent with this belief
hierarchy system is depicted in Fig. 2.
The proposed hierarchical mutual belief system dif-

fers from the traditional mutual belief system [10] in
two ways. First, the coordinating agents’ different
mutual beliefs are emphasized. As our mutual beliefs
never become same, the most important problem to be
solved should be the achievement of cooperation even
under different mutual beliefs. However, traditional
theories of joint activities do not solve this problem.
The cognition of an agent should allows the agent to
coordinate her/his mutual belief with the mutual be-
liefs of others. Meta mutual belief is set at the top of
the hierarchy of the proposed system and provides the
important ability to coordinate roles. Second, mental
self-recursive reflection is represented by the equilib-
rium of dynamics. The traditional mutual belief sys-
tem is represented by the metaphor of self-recursive
reflection by mirrors. However, it seems impossible to
construct the mechanism of self-recursive reflection in
the brain from the viewpoints of information and con-
trol theories, and physics. Therefore, we use the con-
cept of equilibrium between dynamics instead, which
seems feasible in the brain.

3 Machine study

We applied the above-mentioned principles to the
following unsolved problems: autonomous driving
[11], human–robot physical interaction, multi-modal
language acquisition [12, 13], generation [14], and
understanding[15], and robot-directed utterance de-
tection [16]. From these applications, the validity of
the principles was confirmed.
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Cooperation Control

Human feasible infeasible
s-r machine infeasible feasible

Cooperative machine feasible feasible

Table 1: Comparison of the characteristics of three
different experimental frameworks in which subjects
interact with humans, s-r (stimulus-responsive) ma-
chines, and cooperative machines, respectively.

4 Human study with coopera-

tive machines

The above-mentioned cooperative machines can be
used to investigate the human capabilities of coop-
eration. In conventional experiments, human sub-
jects interact with human or stimulus-responsive (s-
r) machines. However, there are some limitations to
achieving coordinated operation and reproducible con-
ditional control of the experiments (Table 1). By using
cooperative machines, we can reduce such limitations,
and explore human capabilities more accurately and
deeply.

5 Research tool

We developed the interactive software, RoCoCo, as a
research tool for exploring human and machine capa-
bilities. RoCoCo has the following features:

• Real time interactive

• Versatile and expandable

• Multi-purpose (human and machine studies)

• Flexible configuration (number of agents, human-
machine, human-human, and machine-machine)

• Flexible task setting (autonomous driving and
physical interaction)

• Various quantitative evaluations

The RoCoCo is now expanding in its versatality and
flexibility.

6 Conclusions

On the basis of the fundamental analysis of coopera-
tion, cognitive and mathematical principles were pro-
posed. The validity of the principles was verified by
applying them to certain unsolved tasks. The poten-
tial of cooperative machines for exploring the human
capabilities of cooperation was discussed. A human
study using the interactive software RoCoCo is un-
derway.
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