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Abstract

Cognitive scientists are paying attention to atten-

tion since Broadbent. Especially studies about psy-

chological evidence, computational models, and their

neural correlates of attention were contributed to the

advances of these areas. Recent advances in deep

learning for both image understanding and natural

language processing are worth considering. Questions

whether these studies are compatible might be inter-

esting. We gave a brief survey in physiology, psychol-

ogy, and computational models about attention. We

also focused on the saliency map and winner-take-all

(WTA) circuits and proposed that the WTA func-

tion might be implemented in the penultimate layer.

Despite differences between physiology and compu-

tational modeling such as bottom-up and top-down

interactions. Attention is still worth studying and at-

tractive all the scholars who are interested in cognitive

functions.

Keywords:Attention, neural networks, winner-

take-all, bottom-up and top-down

1. Introduction

Recent progress of deep learing for both image and

language understanding [19, 9, 6] might be influential

for coginitive science. These studies might be included

as

1. the multi-head attention, or self attention in the

transformer [33] is bottom-up attention in cogni-

tive psychology.

2. Attention based image and language interac-

tions [34]

Th sensory cortex (Fig. 1) is studied is one of en-

coding-―the process by which stimuli are transformed

into patterns of neural activity–and decoding, the pro-

cess by which neural activity generates behavior. The

ventral visual pathway is the most comprehensively

studied sensory cascade. It consists of a series of

connected cortical brain areas. PIT,CIT, AIT, RGC,

LGN, Fig.1(c) are multilayer neural networks, each of

whose layers are made up of a nonlinear combination

of simple operations such as filtering, thresholding,

pooling and normalization.
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Fig. 1 A shematic correspondings between the

brain areas and deep convolutional neurral net-

work model. From [38] Fig. 1

2. Psychological evidence

Attention was studies in psychophysics, functional

brain imaging, electoro-phisiology, neuropsychology,

and computational modelings. We will give a brief re-

view of psychological and computational models with

respect to recent advances in deep learning. There

are several important concepts such as Spotlight

(search light) metaphor [5], feature binding [31],

attention bottle neck [27], and guidance, selec-

tion, enhancement, exogeous vs endogenous, saliency

map [18],WTA[18]. Among them, this paper was in-

tended to address the following points:

1. saliency map = penultimate layer hypothesis,

but multi scale attention proposed by Wang and

Shen [35].

2. botom-up/top-down attention = winner-take-all

= softmax hypothesis [20] It can be explained the

Inhibition of Return [16]

3. In conjunction with the layer represenation [29],

another possibilities might be considered for att-

tetion
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3. Related brain areas

Most prominent areas was shown in fig. 2. Ar-

eas in blue in Fig. 2 indicate the dorsal frontopari-

etal network. “FEF”, frontal eye field; “IPs/SPL”,

intraparietal sulcus/superior parietal lobule. Areas

in orange indicate the stimulus-driven ventral fron-

toparietal network. TPJ, temporoparietal junction

“IPL/STG”, inferior parietal lobule/superior tempo-

ral gyrus; “VFC”, ventral frontal cortex “IFg/MFg”,

inferior frontal gyrus/middle frontal gyrus).

TPJ IPS

FEF
IPs/SPL

Fig. 2 Dorsal and ventral fron-

toparietal networks and their

anatomical relationship with regions

of damage in patients with unilateral

neglect. From [4] Fig. 7a

A shematic diagram was shown in Fig.3. Visual

information enters the primary visual cortex via the

lateral geniculate nucleus (LGN), and the superior

colliculus (SC). From there, visual information pro-

gresses along two parallel hierarchical streams. Cor-

tical areas along the “dorsal stream” (including the

posterior parietal cortex; PPC) are primarily con-

cerned with spatial localization, or “where pathways”

directing attention and gaze towards objects of in-

terest in the scene. Cortical areas along the “ventral

stream” including the inferotemporal cortex(IT) are

mainly concerned with the recognition and identifi-

cation of visual stimuli, or “what pathways”. Several

higher-function areas are thought to contribute to at-

tentional guidance, in that lesions in those areas can

cause a condition of “neglect” in which patients seem

unaware of parts of their visual environment.

One regison studied extensively is the prefrontal

cortex (PFC). Areas within the PFC are bidirection-

ally connected to both the PPC and the IT [21].The

PFC also has an important role in modulating, via

feedback, the dorsal and ventral processing streams.

Eye movement
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Motor and

other systems

Visual information
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Superior
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Fig. 3 A simplified overview of the

main brain areas. From [13]

4. Mesurement of saliency

According to Wang and Shen [35], the terms atten-

tion, saliency, and eye fixation have the same meaning

and used interchangeably here.

Given gaze data while examining targets, the

strength of saliency at gaze locations is often eval-

uated. The normalized scan path saliency (NSS) is a

measure of comparing the strength of saliency at gaze

locations with the average strength of saliency in in-

put images, which is employed in [25, 8]. Moreover,

the Kullback-Leibler divergence between saliency dis-

tributions sampled from gaze locations and those sam-

pled at random is regarded as a measure to evaluate

saliency map from videos [11].

Studies that assume search tasks including visual

search can employ an evaluation measure that counts

the number of shifts of gaze locations to find tar-

gets, by simulating such gaze shifts based on obtained

saliency maps. This measure is employed not only in

the pioneer work by Itti et al. [14]

5. Top-down and bottom-up

Bottom-up: Development of computational mod-

els of attention started with the Feature Integration

Theory [31], which proposed that only simple visual

features are computed in a massively parallel man-

ner over the entire visual field. Attention is then

necessary to bind those early features into a united

object representation, and the selected bound repre-

sentation is the only part of the visual world that

passes though the attentional bottleneck. Koch and
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Ullman [18] extended the theory by proposing the idea

of a single topographic saliency map, receiving in-

puts from the feature maps, as a computationally

effcient representation upon which to operate the se-

lection of where to attend next: A simple maximum

detector or winner-take-all (WTA) neural network

was proposed to simply pick the next most salient

location as the next attended one, while an active

inhibition-of-return (IOR) mechanism would later

inhibit that location and thereby allow attention to

shift to the next most salient location. From these

ideas, a number of fully computational models started

to be developed.

Another bottom-up attention was applied to the

natural language processings [33, 6]. The attention

in BERT 4 (self attention) might be considered as

bottom-up attention.

Fig. 4 NLP based models

Left:encdor-decoder based model

[1], Right:Transofor model[33]

Top-down: Models that address top-down, task-

dependent influences on attention are more complex,

as some representations of goal and of task become

necessary. In addition, top-down models typically in-

volve some degree of cognitive reasoning, not only

attending to but also recognizing objects and their

context, to incrementally update the model’s under-

standing of the scene and to plan the next most task-

relevant shift of attention [23]. For example, one

may consider the following information flow, aimed

at rapidly extracting a task-dependent compact rep-

resentation of the scene, that can be used for further

reasoning and planning of top-down shifts of atten-

tion, and of action [23, 10]

Research towards understanding the mechanisms of

top-down attention has given rise to two broad classes

of models: models which operate on semantic content,

and models which operate on raw pixels and images.

Fig. 5 The architecture of the guided

search 2.0. Modified from [36] Fig. 2

One of the most probable models to account for

the top-down bias is supposed to be Wolfe’s Guided

Search 2.0 [36](Fig. 5). Rensink [27] ellaborated these

notions in terms of “Coherence theory”, “gist”, “atten-

tional hand”, and “tridiac stages”.

6. What and where circuits

“saliency map” and “penultimate layer” The

bottom-up and top-down cues are important to under-

stand attention. Triesman and her collegues [31, 30]

proposed the Feature Integration Theory. They also

mentioned about the “search asymmetry” [32], “pop

out”. Those are hypothesized the several “feature

maps” encoding each feature such as color, orienta-

tion of lines, brightness, motion disparity.

Fig. 6 shows fast R-CNN[7] shows that both infor-

mation about “what” and “where” could be represen-

tated at a penultimate layer.
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Fig. 6 A schematic diagram of Fast

R-CNN [7]

Here, we propose the penultimate layer=saliency

mapy hypothesis. and it is the place of attention oper-

ating with WTA=softmax function(Fig. 5). The soft-

max operation was also designated in the sequence-to-

sequence model [1] (Fig. ??) for translation.Alignment Model

Ɣ nonlinearity (tanh) is crucial!
Ɣ simplest model possible
Ɣ         is precomputed => 

quadratic complexity with low 
constant

(1)

(2)

Fig. 7 Attention in natural laguage

model [1]

This framework suggests that subjects selectively

direct attention to objects in a scene using both

bottom-up, image-based saliency cues and top-down,

task-dependent cues.

On the other hand, physiologists found that dor-

sal and ventral pathways were seperated and might

play different roles each other [24, 22, 15]. This dis-

crepancy between phsiology and deep learning models

might be considered more.

7. Saliency

Fig.8 shows predicted class of test images. The

maps were extracted using a sing back-propagation

pass thhrough a classification ConvNet.

Fig. 8 Image-specific class saliency

map for top-1 predicted class in

ILSVRC-2013 test images. From [29]

Fig. 2

Fig. 9 shows examples of weakly supervised object

segmentation vis ConvNets. 9 left indicates images

from the test set of ILSVRC-2013. Left-middle: the

corresponding saliency maps for the top-1 predicted

class. Right-middle: thresholded saliency maps: blue

shows the areas used to compute the foreground

colour model, cyan – background colour model, pixels

shown in red are not used for color model estimation.

Right: the resulting foreground segmentation masks.

Fig. 9 Weakly supervised object segmen-

tation using ConvNets. From [29] Fig. 3

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”

(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

Fig. 10 Attention for neural image cap-

tioning [37]

8. Compulatation model

We show recent computational models of focal vi-

sual attention, with emphasis on the bottom-up,

saliency of attentional deployment. We highlight five

important trends that have emerged from the compu-

tational literature:
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1. The perceptual saliency of stimuli critically de-

pends on surrounding context; that is, a same

object may or may not appear salient depending

on the nature and arrangement of other objects

in the scene. Computationally, this means that

contextual influences, such as non-classical sur-

round interactions, must be included in models.

2. a unique “saliency map” topographically en-

coding for stimulus conspicuity over the visual

scene has proved to be an efficient and plausi-

ble bottom-up control strategy. Many successful

models are based on such architecture, and elec-

trophysiological as well as psychophysical studies

have recently supported the idea that saliency is

explicitly encoded in the brain.

3. inhibition-of-return (IOR), the process by which

the currently attended location is prevented from

being attended again, is a critical element of at-

tentional deployment. Without IOR, indeed, at-

tention would endlessly be attracted towards the

most salient stimulus. IOR thus implements a

memory of recently visited locations, and allows

attention to thoroughly scan our visual environ-

ment.

4. attention and eye movements tightly interplay,

posing computational challenges with respect to

the coordinate system used to control attention.

Understanding the interaction between overt and

covert attention is particularly important for

models concerned with visual search.

5. scene understanding and object recognition

strongly constrain the selection of attended loca-

tions. Although several models have approached,

in an information-theoretical sense, the problem

of optimally deploying attention to analyse a

scene, biologically plausible implementations of

such a computational strategy remain to be de-

veloped.

9. Summary

We gave a brief survey of 1) physiological or imag-

ing studies, 2) psychological evidence, 3) computa-

tional model. Attention for both image and natual

language processing recently advanced employed at-

tenion mechanisms. Although physiology and brain

imaging studies insisted these mechanisms must be

processed in seperate pathways (what and where

pathways), recent computational models deal these

information in the same (peneultimate) layer. The

discrepancy between physiological and computational

models must be considered deeply for further under-

standing.
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