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Abstract
This paper presents a cognitive model that sim-

ulates how the reliance on automation in a sim-
ple tracking task, which represents vehicle operation,
changes as the success probabilities of automatic and
manual mode vary. The model was developed by us-
ing ACT-R, and we also introduce three methods of
reinforcement learning: the synchronization of utili-
ties in the same mode, the summation of rewards over
time, and the prediction from the past. The model
performs this task through productions that manage
perception and motor control. The utility values of
these productions are updated based on rewards in
every perception-action cycle. A run of this model
simulated the overall trends of the behavioral data,
suggesting some validity of the assumptions made in
our model.
Keywords — Automated Operation, Rein-
forcement Learning, ACT-R, Semi-Markov
Decision Process

1. Introduction
For sustainable industrial development, it is impor-

tant to understand how humans adapt new technolo-
gies. Disuse of new technology results in less innova-
tion, while misuse of new technology can cause serious
accidents [e.g., 1, 2]. We focus here on adaptation to
automated vehicles. This currently exists for speed
control in many modern vehicles (“cruise control”).
We examine here steering control, which is not com-
mon at the present but it is a technology being devel-
oped.

Vehicle operation is a dynamic continuous process
in which the cycle of perception, judgment, and ac-
tion sequentially repeats. Automation vehicle sys-
tems partially substitute such human operation. In a
case where an operator can use automatic operation,
s/he repeats the cycle of perception and judgment
while observing that an automation system executes

the overall cycle. When the operator considers man-
ual control is suitable, he can turn off the automation
to return to manual control.

Such an adaptation mechanism is possibly ex-
plained by reinforcement learning, which updates se-
lection probabilities of actions with reward from the
environment [3]. In a broader context, this paradigm
has already been used to model the interaction be-
tween human and automation systems. Gao and Lee
[4] proposed a computational model called Extended
Decision Field Theory that simulates how operators
adopt a system that automates plant operation. In
their model, a selection probability of using the au-
tomation system is dynamically changed through it-
erated environmental feedback. Although Gao and
Lee did not refer to any studies about reinforcement
learning, their model is essentially a type of reinforce-
ment learning.

However it is not simple to apply the paradigm
of reinforcement learning to our problem. Gener-
ally, reinforcement learning has been applied to dis-
crete fields called Markov Decision Process (MDP)
like bandit tasks [3]. Plant operation modeled by
Gao and Lee is also classified into an MDP process.
Contrary to typically applied fields of reinforcement
learning, vehicle operation does not directly fit into
MDP. Rather it can be expressed as an SMDP (Semi-
Markov Decision Process). SMDP introduces the con-
cept of a time delay between action selection and state
transition, and rewards that can be delivered at dif-
ferent points in time [5, 6, 7, 8, 9]. In this study, we
prepared a task that extracts continuous character-
istics of vehicle operation and construct a model to
reveal what type of mechanisms are needed for proper
adaptation on automatic vehicle operation.

2. The Task

This study extends our previous study adding new
learning algorithms. Morita et al [10] simulated a psy-
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Figure 1 The Line-following task environment

chological experiment conducted by Maehigashi et al
[11]. The task used in these studies was a simple
tracking task, called the line-following task. Figure 1
shows the task environment. In this task, the oper-
ators are required to control the horizontal position
of the vehicle (red circle) to follow the black line that
scrolls down at 24 pixels per second. The screen is
updated every 40 ms. If the vehicle is not on the line,
a warning is presented outside of the window. The
line is drawn by randomly combining 48 pixels high
line patterns of varied angles (30, 45, 90, 135, and 150
degrees).

The vehicle is controlled by commands of “left”,
“straight”, or “right”. If the vehicle receives a left
command, the vehicle moves 1 pixel left from the orig-
inal position. The command is sampled at 48 Hz1.
Therefore, maximally, the vehicle can move 2 pixels
per one pixel scroll of the line.

An operator can chose manual or auto controls to
send commands. In the manual control, operators use
left and right arrow keys to send commands. If an op-
erator’s finger is put on a right arrow key, the vehicle
keeps receiving a right command at every 20 ms un-
til the key is released. In the auto control, operators
monitor that the auto control moves the vehicle. The
auto control tries to follow an optimal line presented
as the green line in Figure 1. An optimal line is the
shortest line to pass “goals” located on each corner
shown as blue dots. If the center of the vehicle is
off the optimal line, the auto control system sends a
command to correct the vehicle position. In the ex-
periment, the optimal line and goals are not visible
to participants.

1If a key-press event is detected, a flag of sending commands
is on. This flag is off when a key-release event is detected.
Therefore, the command rate is not influenced by a key-repeat
rate setting in an operating system.

In both control modes, commands are not always
successfully sent to the vehicle. Failures occur at
specified rates. In this study, Ca and Cm specify
these rates. If Ca or Cm is low, the vehicle controlled
by the corresponding mode is lagged, and it becomes
hard to follow the line. To conduct the task suc-
cessfully, operators need to select a suitable mode in
each situation. The operators freely change between
modes by pressing the space-bar.

3. Model

3.1 Architecture

Morita et al. [10] used ACT-R (Adaptive Control of
Thought-Rational) [12] to construct a model for the
above task. This architecture integrates several cog-
nitive modules including a visual module, a motor
module, and a production module. A visual module
is used to take information from an external envi-
ronment. A motor module manipulates devices like
a keyboard or a mouse in an external environment.
These modules have buffers to hold temporarily in-
formation called a chunk. A production module inte-
grates the other modules by production rules, which
consists of a condition/action pair that is used in
sequence with other productions to perform a task.
Conditions and actions in production rules are speci-
fied with buffer contents of each module.

Importantly, each event caused by the modules of
ACT-R has a parameter of time approximation. For
example, ACT-R production rules take 50 ms to ap-
ply. Events related visual perception and motor con-
trols, such as eye-movement, mouse-movements and
key-presses, also have time parameters. These pa-
rameters were assigned and validated by psychologi-
cal studies [13]2. By using these parameters, ACT-R
makes real-time simulations possible.

ACT-R also includes sub-symbolic cognitive pro-
cesses that modulate the probabilites of firing pro-
duction rules. When several rules match to buffer
conditions, conflict resolution of production rules is
made based on utility values assigned to production
rules. The learning of utility is controlled by equation
1:

Ui(n) = Ui(n − 1) + α[Ri(n) − Ui(n − 1)] (1)

α is the learning rate; Ri(n) is the reward value given
to production i at time n. The learning occurs when

2This approach was originally developed by Card et al [14].
The perceptual-motor system of ACT-R was also developed
based on EPIC architecture [15]
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Figure 2 The basic cycle of the model.

a reward is triggered, and all productions that have
fired since the last reward are updated. Though the
theory of ACT-R [12] does not explicitly note it, this
learning is same as the basic reinforcement learning
method called Q-learning, which updates the qual-
ity of a state-action combination by recieving rewards
from the environment [3].

We considered that the above characteristics (the
visual and motor modules to interact with external
environments, the real-time simulation, the utility ap-
date based on reinforcement learning) are useful for
modeling an adaptation process on automatic vehicle
operation.

3.2 Simulated task environment

By using the ACT-R graphical user interface (AGI)
that is part of ACT-R 6 [12], we developed a sim-
ulated task environment with which the constructed
model interacts. The simulated environment is same
as the original environment in the keyboard layout,
the screen update rates, the line scrolling speed, the
vehicle size, the line width, and the screen size. The
auto control mode is also implemented with Common
Lisp in the simulated task environment. However,
unlike the original environment, visible goal positions
are set at each corner to allow the model to perceive
the path.

3.3 Basic cycle of the model

Figure 2 indicates a basic cycle of the model con-
structed in our previous study [10]. The model uses
the production, goal, vision and motor modules of
ACT-R 6, and 11 production rules. These rules con-
sist of a perceptual (the top part of the figure) and
motor process (the bottom part of the figure) similar
to previous driving models in ACT-R [16, 17, 18].

In the perceptual process, the model picks visual in-

formation from a visual location buffer that holds lo-
cation information of objects in the environment. The
FindVehicle rule finds the horizontal position of the
vehicle, and places it into the goal buffer. The Find-
Goal rule finds the horizontal position of the nearest
goal position, and places it into the goal buffer. The
position information in the goal buffer is used in the
subsequent motor process. After the motor process,
information in the goal buffer is cleared to begin the
next cycle.

The motor process depends on the current mode.
In each mode, there is a rule to switch the current
mode (ToAuto / ToManual). These mode-switching
rules send a command to release currently pressed
keys to the motor module. After finishing the key-
release, the PressSpace rule sends a motor command
pressing the space-bar.

The mode-switching rules compete with other rules
in each situation. In the auto mode, the ToManual
rule conflicts with the KeepA rule that just clears the
goal buffer. In the manual mode, the ToAuto rule
competes with the KeepM, ToLeft, ToRight, LtoS, and
RtoS rules. These five rules have different conditions
specifying the vehicle and the goal positions, and cur-
rent move-commands (left, right, straight). The ac-
tion clauses of the ToLeft, ToRight, LtoS, RtoS rules
send a command to hold or release a key to the mo-
tor module3. The KeepM rule does not have any ac-
tion clauses relating the motor module. This rule just
clears the goal buffer.

Figure 3 presents a time flow diagram showing the
relations between the environmental changes and the
model cycles. The environment regularly updates the
screen every 40 ms. Individual rule firings take 50 ms,
but the cycle of the model is not regulated. There are
delays in the visual and motor processes. The pro-
cess of the visual location module itself has no delay.
However, encoding the location into the goal buffer
lags 10 ms. from the environment. The delay of the
motor control is larger than that of the perceptual
module. The ACT-R motor module needs prepara-
tion and execution time, which depends on the sta-
tus of the motor module. These delays disadvantage
manual control compared to automatic control.

In the previous study using this model, the fitting
to the data could be improved, though the model sim-
ulated some qualitative tendencies of the psychologi-

3The default ACT-R implementation does not include key-
press and key-release functions. We used a customised module
in which the time parameter of key-punch is used.
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Figure 3 Time flow diagram of the ACT-R model com-
ponents in the task.

cal experiment. The following section describes learn-
ing mechanisms included in the model to improve its
fit to human behaivor.

3.4 Learning and mode switching

In studies that use ACT-R reinforcement learning
[12, 13, 19], a reward parameter is assigned to the
specific rules by a modeler. When a rule with a re-
ward value fires, all rules that have fired since the
last utility update receive the reward. Following this
paradigm, we assigned a reward parameter to the
FindVehicle rule (see Figure 2). In every cycle of the
model, this rule perceives the vehicle location. Thus,
it is reasonable to assume that this rule triggers re-
wards by checking a relative position between the ve-
hicle and the line. However there are some difficulties
for simply applying this paradigm to our study.

First, the structures of the conflicts are not the
same between the manual and the auto modes. The
ToAuto rule that changes the current mode to the
auto mode conflicts with five rules in the manual
mode (See Figure 2). On the other hand, the ToMan-
ual rule that changes the current mode to the manual
mode conflicts only with the KeepA rule. To solve
this asymmetry, we built a synchronization mech-
anism for the rules in the manual control. If any
of the rules that compete with the ToAuto rule up-
dates its utility, other rules also update their utili-
ties4. This synchronization mechanism is not imple-
mented in ACT-R. However, the studies of hierar-
chical reinforcement learning have proposed a simi-

4The Common Lisp program that controls the simulation
interrupts the model process, and the utilities of rules were
overwritten by the spp command.

lar mechanism that chunks together primitive actions
into macro actions [6, 20].

Second, as shown in Figure 3, there are motor de-
lays in the ACT-R architecture. Reflecting these de-
lays, the rules in the manual mode receive less oppor-
tunity for updating rewards. This rewarding problem
typically occurs in reinforcement learning in SMDP
situations. To solve this, some researchers propose a
procedure that sums received reward values over time
[5, 7, 8]. Following these studies, we modified a re-
warding approach. The reward values in this study do
not directly correspond to a success at each point of
utility updates, but correspond to movement distance
(pixels) since the last utility update.

Third, during the cycle in Figure 2, the utilities
of the two modes are not directly compared. The
rules that keep the current mode receive rewards cor-
responding how well the vehicle moves in the cur-
rent mode. Contrary, rewards for the mode-switching
rules are influenced by the vehicle movement in both
of the two modes because the perception-action cycle
of mode-swiching bridges across the two modes (see
Figure 3). Accordingly, mode switching is made only
based on the utilities for the current mode without
considering how well the vehicle moved in the other
mode. Adaptation to the proper mode may be possi-
ble even if this problem exists. However, it is reason-
ably assumed that human can predict future reward
by remembering past experience. Some researchers
proposed a paradigm of the model-base reinforcement
learning that predicts future reward based on environ-
mental model [21, 22]. Therefore, we introduced the
meta level conflict-resolution that directly compare
the two modes. The details of the meta-level conflict
resolution are described in Morita et al [10].

4. Model Simulation

Maehigash et al [11] conducted the task in 25 con-
ditions where Ca (Capability of Auto) and Cm (Ca-
pability of Manual) levels were manipulated (5 lev-
els of Ca ranging from 30% to 70% v.s. 5 levels of
Cm ranging from 30% to 70%). Similarly, the model
conducted the task choosing two modes of control in
the 25 conditions (n = 100). In each condition, the
model and the participants conducted the task for 40
seconds.

Figure 4 indicates the auto use ratio in each Ca and
Cm level, which represents how long the auto mode is
used during the task. Comparison of the five graphs
reveals decreases of auto use ratio with increases of
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Figure 4 Auto use ratio by the model as capabilities of the model and the auto vary. Errorbars represent ±
1/2σ.

Figure 5 Number of switches during a run between auto and manual as control capabilities of the model and
the auto vary. Errorbars represent ±1/2σ.

the Cm level. We can also see an increase of the
auto use ratio with increases of the Cm level from
each graph. The model shares these tendencies with
the data. Figure 5 presents the number of switches
between models in each Ca and Cm level, which rep-
resents how many switches occurred between the two
modes. From this figure, we can also observe the same
tendencies between the experiment and the simula-
tion, including the decrease of the number of switches
with the increase of Ca and Cm.

5. Conclusion

The present study tried to simulate adaptations on
automated vehicle operation in a simple tracking task.
We assumed that a paradigm of reinforcement lean-
ing can be applied to this problem. Based on this
assumption, we used the ACT-R architecture to ex-
plore mechanisms to simulate the psychological data.
The results of the simulation show overall correspon-
dence with the experimental data, suggesting validity
of our assumption.

We consider that the strength of this work is in
combining ACT-R with studies of reinforcement lean-
ing in SMDP. ACT-R has so far been used to simu-
late many psychological experiments. Because of this

history, this architecture made possible to produce
a simulation that can directly compare with human
data. In our study, the perceptual and motor modules
of ACT-R were used to represent time constraints of
the task (Figure 3).

However, to simulate the experiment, we needed
to extend the reinforcement learning implemented in
ACT-R. These extensions included the synchroniza-
tion of utilities in the same mode, the summation of
rewards over time, and the prediction from the past.
Without these, we could not achieve as good a fit to
the data (Figure 4 and 5).

Despite the long history of this architecture, stud-
ies using the reinforcement learning of ACT-R have
not been so common. In this community, instance-
based learning, which uses declarative memory, is
more popular than reinforcement learning to simulate
decision-making in discrete tasks [23, 24, 25]. On the
other hand, reinforcement learning in SMDP has been
mainly developed in the field of control engineering
and robotics. The extensions of reinforcement learn-
ing made in our study are not new in these fields. Sev-
eral studies have tried to apply reinforcement learning
to complex and dynamic situation [6, 20, 7, 21]. These
studies were not aimed to make predictions of human

2014年度日本認知科学会第31回大会 O1-1

67



behavior, though the same authors discuss theoret-
ical connections between reinforcement learning and
neural computation especially concerning dopamine
release [22, 26, 27].

In sum, we consider that our study has not only
the practical merit of presenting modeling techniques
for adaptations on automated vehicle operation, but
also the theoretical merit of combining ACT-R with
reinforcement learning theories.
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